Spectroscopy of ytterbium-doped tantalum pentoxide rib waveguides on silicon

نویسندگان

  • A. Aghajani
  • G. S. Murugan
  • N. P. Sessions
  • S. J. Pearce
  • V. Apostolopoulos
  • S. Wilkinson
چکیده

The design, fabrication and spectroscopic characterization of ytterbium-doped Ta2O5 rib waveguide are described. The waveguides are fabricated on silicon substrates and operate in a single mode at wavelengths above 970 nm. The peak absorption cross-section was measured to be 2.75 × 10 cm at 975 nm. The emission spectrum was found to have a broad fluorescence spanning from 990 nm to 1090 nm with the fluorescence emission peak occurring at a wavelength of 976 nm. The excited-state life time was measured to be approximately 260 μs. ©2014 Optical Society of America OCIS codes: (130.0130) Integrated optics; (160.3130) Integrated optics materials; (230.7380) Waveguides, channeled; (300.6360) Spectroscopy, laser; (140.3615) Lasers, ytterbium. References and links 1. S. Ohara and Y. Kuroiwa, “Highly ytterbium-doped bismuth-oxide-based fiber,” Opt. Express 17(16), 14104– 14108 (2009). 2. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997). 3. D. Geskus, S. Aravazhi, S. M. García-Blanco, and M. Pollnau, “Giant optical gain in a rare-earth-ion-doped microstructure,” Adv. Mater. 24(10), OP19–OP22 (2012). 4. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007). 5. D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, and L. Zhang, “Quasi 3-level 1.03μm laser operation of a planar ion-implanted Yb-YAG waveguide,” Opt. Commun. 99(3–4), 211–215 (1993). 6. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010). 7. J. K. Jones, J. P. de Sandro, M. Hempstead, D. P. Shepherd, A. C. Large, A. C. Tropper, and J. S. Wilkinson, “Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3,” Opt. Lett. 20(13), 1477–1479 (1995). 8. M. Fujimura, H. Tsuchimoto, and T. Suhara, “Yb-diffused LiNbO3 annealed/proton-exchanged waveguide lasers,” IEEE Photon. Technol. Lett. 17(1), 130–132 (2005). 9. D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Wörhoff, and M. Pollnau, “Low-threshold, highly efficient Gd, Lu co-doped KY(WO4)2:Yb planar waveguide lasers,” Laser Phys. Lett. 6(11), 800–805 (2009). 10. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009). 11. A. Choudhary, W. Bolaños, P. Kannan, J. J. Carvajal, M. Aguilo, F. Diaz, and D. P. Shepherd, “Low-threshold, mirrorless emission at 981 nm in an Yb, Gd, Lu:KYW inverted rib waveguide laser,” Conference on Solid State Lasers XXII Technology and Devices, San Francisco, USA (2013). 12. W. Bolaños, F. Starecki, A. Braud, J.-L. Doualan, R. Moncorgé, and P. Camy, “2.8 W end-pumped Yb:LiYF4 waveguide laser,” Opt. Lett. 38(24), 5377–5380 (2013). 13. C. Florea and K. A. Winick, “Ytterbium-doped glass waveguide laser fabricated by ion-exchange,” J. Lightwave Technol. 17(9), 1593–1601 (1999). 14. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Monolithic 100 mW Yb waveguide laser fabricated using the femtosecond-laser direct-write technique,” Opt. Lett. 34(3), 247–249 (2009). #212073 $15.00 USD Received 15 May 2014; revised 20 Jun 2014; accepted 20 Jun 2014; published 3 Jul 2014 (C) 2014 OSA 1 August 2014 | Vol. 4, No. 8 | DOI:10.1364/OME.4.001505 | OPTICAL MATERIALS EXPRESS 1505 15. A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, and C. T. A. Brown, “Fundamentally mode-locked, femtosecond waveguide oscillators with multi-gigahertz repetition frequencies up to 15 GHz,” Opt. Express 21(17), 19608–19614 (2013). 16. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett. 37(10), 1691–1693 (2012). 17. E. H. Bernhardi, H. A. G. M. van Wolferen, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb,” Opt. Lett. 36(5), 603–605 (2011). 18. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4(1), 37–40 (2010). 19. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. M. W. van Uffelen, and M. K. Smit, “Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996). 20. C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004). 21. J. D. B. Bradley, R. Stoffer, L. Agazzi, F. Ay, K. Wörhoff, and M. Pollnau, “Integrated Al2O3:Er ring lasers on silicon with wide wavelength selectivity,” Opt. Lett. 35(1), 73–75 (2010). 22. B. Unal, M. C. Netti, M. A. Hassan, P. J. Ayliffe, M. D. B. Charlton, F. Lahoz, N. M. B. Perney, D. P. Shepherd, C.-Y. Tai, J. S. Wilkinson, and G. J. Parker, “Neodymium-doped tantalum pentoxide waveguide lasers,” J. Quantum Electron. 41(12), 1565–1573 (2005). 23. A. Z. Subramanian, C. J. Oton, D. P. Shepherd, and J. S. Wilkinson, “Erbium-doped waveguide laser in tantalum pentoxide,” Photon. Technol. Lett. 22(21), 1571–1573 (2010). 24. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998). 25. A. Subramanian, “Tantalum pentoxide waveguide amplifier and laser for planar lightwave circuits,” Ph.D. thesis, University of Southampton, UK (2011). 26. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2(1), 60–200 (2010). 27. R. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron. 27(8), 1971–1974 (1991). 28. A. Z. Subramanian, G. S. Murugan, M. N. Zervas, and J. S. Wilkinson, “Spectroscopy, modeling and performance of erbium-doped Ta2O5 waveguide amplifiers,” J. Lightwave Technol. 30(10), 1455–1462 (2012). 29. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964). 30. Y. Yu, Y. Huang, L. Zhang, Z. Lin, and G. Wang, “Growth and spectral assessment of Yb-doped KBaGd(MoO4)3 crystal: a candidate for ultrashort pulse and tunable lasers,” PLoS ONE 8(1), e54450 (2013). 31. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997). 32. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999). 33. J. Y. Allain, M. Monerie, and H. Poignant, “Ytterbium-doped fluoride fibre laser operating at 1.02 μm,” Electron. Lett. 28(11), 988–989 (1992). 34. P. Nandi and G. Jose, “Ytterbium-Doped P2O5 -TeO5 Glass for Laser Applications,” IEEE J. Quantum Electron. 42(11), 1115–1121 (2006). 35. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Y b-dope d KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997). 36. W. F. Krupke, “Ytterbium solid-state lasers. the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287– 1296 (2000). 37. T. Y. Fan, “Quasi-three-level lasers” in Solid State Lasers: New Development and Applications, M. Inguscio and R. Wallenstein, eds. (Plenum Press, 1993)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveguide lasers in ytterbium-doped tantalum pentoxide on silicon.

A waveguide laser in an ytterbium-doped tantalum pentoxide film is reported. The waveguide is formed of a rib of sputtered tantalum pentoxide on top of oxidized silicon with an over-cladding of silica. Emission at a wavelength of 1025 nm was achieved with an absorbed pump power threshold and slope efficiency of ≈29  mW and 27%, respectively, for a cavity formed by a high reflector mirror and an...

متن کامل

Submicron optical waveguides and microring resonators fabricated by selective oxidation of tantalum.

Submicron tantalum pentoxide ridge and channel optical waveguides and microring resonators are demonstrated on silicon substrates by selective oxidation of the refractory metal, tantalum. The novel method eliminates the surface roughness problem normally introduced during dry etching of waveguide sidewalls and also simplifies fabrication of directional couplers. It is shown that the measured pr...

متن کامل

Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates.

A platform for high index-contrast integrated photonics based on tantalum pentoxide submicrometer waveguides on silicon substrates is introduced. The platform allows demonstration of microring resonators with loaded quality factor, Q, of 67,000 and waveguides with a propagation loss of 4.9 dB/cm. Grating couplers, with an insertion loss of ~6 dB per coupler and 3 dB bandwidth of ~50 nm, are als...

متن کامل

Preparation of Light-Emitting Ytterbium-Doped Tantalum-Oxide Thin Films Using a Simple Co-Sputtering Method

Light-emitting ytterbium-doped tantalum-oxide thin films were prepared using a simple co-sputtering method for the first time. Sharp photoluminescence peaks having a wavelength of around 980 nm were observed from films annealed from 700 ̊C to 1000 ̊C for 10 to 40 min. The strongest intensity of the 980-nm peak was obtained from a film deposited using three ytterbium-oxide pellets and annealed at ...

متن کامل

Evanescent field Sensors Based on Tantalum Pentoxide Waveguides – A Review

Evanescent field sensors based on waveguide surfaces play an important rolewhere high sensitivity is required. Particularly tantalum pentoxide (Ta₂O₅) is a suitablematerial for thin-film waveguides due to its high refractive index and low attenuation.Many label-free biosensor systems such as grating couplers and interferometric sensors aswell as fluorescence-based systems benefit from this wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014